953 research outputs found

    Representation of the three-body Coulomb Green's function in parabolic coordinates: paths of integration

    Full text link
    The possibility is discussed of using straight-line paths of integration in computing the integral representation of the three-body Coulomb Green's function. In our numerical examples two different integration contours are considered. It is demonstrated that only one of these straight-line paths provides that the integral representation is valid

    Relativistic mask method for electron momentum distributions after ionization of hydrogen-like ions in strong laser fields

    Full text link
    Wavefunction-splitting or mask method, widely used in the non-relativistic calculations of the photoelectron angular distributions, is extended to the relativistic domain within the dipole approximation. Since the closed-form expressions for the relativistic Volkov states are not available within the dipole approximation, we build such states numerically solving a single second-order differential equation. We calculate the photoelectron energy spectra and angular distributions for highly charged ions under different ionization regimes with both the direct and the relativistic mask methods. We show that the relativistic mask method works very well and reproduces the electron energy and angular distributions calculated by the direct method in the energy range where both methods can be used. On the other hand, the relativistic mask method can be applied for longer laser pulses and/or higher photoelectron energies where the direct method may have difficulties

    The parabolic Sturmian-function basis representation of the six-dimensional Coulomb Green's function

    Full text link
    The square integrable basis set representation of the resolvent of the asymptotic three-body Coulomb wave operator in parabolic coordinates is obtained. The resulting six-dimensional Green's function matrix is expressed as a convolution integral over separation constants.Comment: 14 pages, 2 figure

    Recovering Grammar Relationships for the Java Language Specification

    Get PDF
    Grammar convergence is a method that helps discovering relationships between different grammars of the same language or different language versions. The key element of the method is the operational, transformation-based representation of those relationships. Given input grammars for convergence, they are transformed until they are structurally equal. The transformations are composed from primitive operators; properties of these operators and the composed chains provide quantitative and qualitative insight into the relationships between the grammars at hand. We describe a refined method for grammar convergence, and we use it in a major study, where we recover the relationships between all the grammars that occur in the different versions of the Java Language Specification (JLS). The relationships are represented as grammar transformation chains that capture all accidental or intended differences between the JLS grammars. This method is mechanized and driven by nominal and structural differences between pairs of grammars that are subject to asymmetric, binary convergence steps. We present the underlying operator suite for grammar transformation in detail, and we illustrate the suite with many examples of transformations on the JLS grammars. We also describe the extraction effort, which was needed to make the JLS grammars amenable to automated processing. We include substantial metadata about the convergence process for the JLS so that the effort becomes reproducible and transparent

    Nucleon-nucleon interaction in the JJ-matrix inverse scattering approach and few-nucleon systems

    Full text link
    The nucleon-nucleon interaction is constructed by means of the JJ-matrix version of inverse scattering theory. Ambiguities of the interaction are eliminated by postulating tridiagonal and quasi-tridiagonal forms of the potential matrix in the oscillator basis in uncoupled and coupled waves, respectively. The obtained interaction is very accurate in reproducing the NNNN scattering data and deuteron properties. The interaction is used in the no-core shell model calculations of 3^3H and 4^4He nuclei. The resulting binding energies of 3^3H and 4^4He are very close to experimental values.Comment: Text is revised, new figures and references adde

    Studying of stowage massifs formation conditions in deep-laying rich KMA iron oxides developing and efficient stowage composition projection

    Get PDF
    On the example of Yakovlevsky iron-ore field which is characterized by composite hydro-geological and mining development conditions the natural monitoring technique of intense stowage massif strained state, which is formed in the descending layered dredging system of unstable rich iron oxides is proved and approve

    Phytohormonal regulation of in vitro formation of wheat androgenic structures

    Get PDF
    This research is devoted to developing a method of phytohormonal regulation of in vitro formation of a certain type of wheat androgenic structures. Using the method of ELISA it was shown that the induction of certain sporophytic morphogenesis pathway in vitro of anther haploid cells - microspores depends on both the content of endogenous auxin IAA in anthers before inoculating them onto induction medium, and the concentration of exogenous auxin 2,4-D in this medium. The obtained data confirms the principle possibility of regulation of ways of getting androgenic regenerants in vitro by selecting the optimal balance of endogenous and exogenous auxin

    On deformation behaviour of polycrystalline iridium at room temperature

    Full text link
    Deformation and fracture behaviour of cold drawing iridium wire under tension at room temperature is examined. High purity polycrystalline iridium was manufactured using pyrometallurgical technology. During the initial stage of cold rolling, iridium wire has its usual grain structure and exhibits brittle deformation behaviour: Poor plasticity and brittle transgranular fracture (BTF). However, the wire begins demonstrating high plasticity including necking in spite of the brittle fracture mode when the lamellar structure has been formed in iridium during cold drawing. © 2021 Johnson Matthey Public Limited Company. All rights reserved.The Russian Science Foundation supports this research project (#18-19-00217)
    corecore